casino siteleri güvenilir deneme bonusu deneme bonusu veren siteler casino siteleri deneme bonusu deneme bonusu veren siteler 2024 güncel deneme bonusu veren siteler güvenilir slot siteleri bonus veren siteler deneme bonusu veren siteler en iyi bahis siteleri deneme bonusu 2024 güvenilir deneme bonusu deneme bonusu veren siteler güvenilir bahis siteleri en iyi bahis siteleri yeni deneme bonusu veren siteler deneme bonusu veren siteler güvenilir slot siteleri tipobet matadorbet tipobet 1xbet giriş deneme bonusu sahabet
Главная Получение новых функциональных материалов из кремнисто-титановых отходов переработки лейкоксеновых руд Ярегского месторождения
Получение новых функциональных материалов из кремнисто-титановых отходов переработки лейкоксеновых руд Ярегского месторождения Печать E-mail

И.А.Перовский, И.Н.Бурцев
Институт геологии Коми научного центра Уральского отделения РАН

Россия располагает одной из крупнейших в мире, разнообразной, перспективной минерально-сырьевой базой титана. По запасам титановой руды уникальным является Ярегское нефтетитановое месторождение, порода которого представляет собой лейкоксен-кварцевый песчаник,
сцементированный вязкой нефтью (битумом).

Лейкоксен представляет собой агрегаты микрокристаллов титановых минералов (рутил, анатаз, брукит) и кварца. Обилие в рудном материале кремнезема, трудноотделимого от диоксида титана, затрудняет переработку лейкоксеновых руд методами, освоенными промышленностью [1].

В принятой схеме переработки лейкоксеновых руд Ярегского месторождения (участок недр, осваиваемый ОАО «Ярега Руда») добытая руда поступает на флотационное обогащение с получением лейкоксенового концентрата (60% TiO2) и кремнисто-титанового концентрата (40% TiO2).

Выход кремнисто-титанового концентрата довольно значителен и составляет около 30% от общего выхода титановых концентратов.

И лейкоксеновый и кремнисто-титановый концентрат могут подвергаться дальнейшему химическому обогащению в автоклавах с использованием растворов NaOH. В результате получают титановые автоклавные концентраты с содержанием TiO2 82%, которые предназначены для переработки в пигментный диоксид титана по хлоридной технологии [2]. Помимо пигментного диоксида титана, товарными продуктами являются нанодиоксид титана, диоксид кремния (аэросил), цветные титановые пигменты (получают на основе кремнисто-титановых концентратов). Имеются и другие способы переработки лейкоксеновых руд, обзоры можно найти в работах [1, 3].

Сравнительная оценка предложенных технологических решений позволяет утверждать о большом потенциале в реализации иных способов переработки лейкоксеновых руд Ярегского месторождения. Вторым важным обстоятельством является целесообразность наиболее эффективной утилизации кремнисто-титановых отходов обогащения и переработки лейкоксеновых руд, а также извлечение редких металлов и редких земель из концентратов.

В Институте геологии Коми НЦ УрО РАН разрабатывается новая технология обескремнивания лейкоксена с использованием фторидных компонентов. В результате применения такой технологии из товарных флотационных лейкоксеновых концентратов, содержащих 55-65% TiO2 и 30-35% SiO2, получают высокотитановые продукты с содержанием 88-95% TiO2 и 0.5-1.0% SiO2 [4]. Комбинация этой технологии с хорошо отработанными процессами золь-гель синтеза позволяет получать новые композиционные (бинарные) материалы на основе оксидов титана и кремния. Такие сложные композиты находят широкое применение в специальных красках, композитных материалах, сплавах, а также могут выступать в роли прекурсоров для получения микро- и нанопористых каркасных титаносиликатов.

В данной работе представлены результаты синтеза титаносиликатов из продуктов переработки лейкоксена Ярегского месторождения гидротермальным способом.

В качестве исходного материала был использован флотационный лейкоксеновый концентрат Ярегского месторождения (табл. 1).

Таблица 1 Химический состав лейкоксенового (1) и титанового (2) концентратов

     

Содержание оксидов, мас. %

     

TiO2

SiO2

Al2O3

Fe2O3

ZrO2

CaO

K2O

Y2O3

Nb2O5

1

56.52

36.17

3.44

2.87

0.17

0.13

0.63

0.03

0.04

2

85.73

0.80

8.90

2.57

0.50

0.13

1.22

0.03

0.12

Минеральный состав лейкоксена по результатам рентгенофазового анализа представлен в основном рутилом и кварцем. Для проведения гидротермального синтеза в качестве прекурсоров использовался кремнисто-титановый концентрат, полученный по оригинальному фтораммонийному способу переработки лейкоксенового концентрата, описанному нами в работе [4].

В результате фтораммонийного способа обескремнивания лейкоксенового концентрата получаются высокотитановые концентраты (табл. 1), пригодные для переработки в пигментный диоксид титана по хлорному способу и для других направлений использования.

Минеральный состав обескремненного титанового концентрата, по данным РФА, представлен преимущественно фазами рутила и анатаза, с незначительным количеством кварца, оставшимся, очевидно в виде микроскопических, невскрытых включений. Важным моментом является устойчивое накопление в титановых концентратах оксидов редких металлов и редких земель.

Для перевода неразложившихся фторидных комплексов кремния и титана в раствор проводилось водное выщелачивание. Получение гидратированного осадка из фильтрата осуществлялось путем гидролиза с контролем значения pH и состава образующегося осадка. В качестве гидролизующего агента выступал водный раствор аммиака. Химический состав гидратированного осадка приведен в табл. 2. На содержание основных оксидов влияет степень механоактивации исходного лейкоксенового концентрата, данные эффекты рассмотрены в работе [5].

Таблица 2 Химический состав гидратированного осадка

№ обр.

Содержание оксидов, мас. %

Примечание

TiO2

SiO2

K2O

Fe2O3

1

42.05

53.75

0.21

3.99

концентрат, активированный в центробежном истирателе

2

29.49

68.12

-

2.39

флотационный концентрат, без активации

В качестве основного метода синтеза титаносиликатов был выбран гидротермальный автоклавный синтез. Навеску порошка гидратированного осадка с разным мольным соотношением xTiO2 : ySiO (1:1, 1:3) смешивали с 1.5 раствором NaOH. Гидротермальный синтез проводили в автоклаве с тефлоновой ячейкой на 100 мл, степень заполнения ячейки составляла 80%. Синтезированные образцы исследовали методами рентгеновского анализа на дифрактометре XRD-6000 фирмы SHIMADZU и сканирующей электронной микроскопии на микроскопе Tescan Vega 3 LMH. Химический состав был определен методом рентгенофлуоресцентной спектроскопии (в пересчете на основные оксиды).

Результаты рентгеновского анализа показали наличие групп дифракционных линий, отвечающих структурам ситинакита и натисита.

Основные пики полученных образцов хорошо согласуются с кристаллографическими данными (рис. 1, 2).

Рентгенограмма образца Sit-ситинакита

Рис. 1. Рентгенограмма образца Sit-ситинакита               Рис. 2. Рентгенограмма синтезированного STS-натисита

 (образец №1, 1TiO2:1SiO)                                           (образец № 2, 1TiO2:3SiO)

По химическому составу полученные продукты также соответствуют фазам ситинакита и натисита. Отмечаются также примеси циркония и иттрия. Размер полученных кристаллов варьирует от 4 до 7 мкм.

Синтезированные титаносиликаты стабильно формируется в процессе гидротермального синтеза в щелочной среде за 12 часов. Мольное отношение оксидов титана и кремния влияет на формирование структуры получаемых продуктов.

Таким образом, в лабораторных условиях на основе кремнисто-титановых отходов переработки лейкоксеновых концентратов Ярегского месторождения синтезированы гетерокаркасные титаносиликаты. Это значительно расширяет перечень потенциально получаемых из лейкоксеновых руд новых функциональных материалов, обеспечивая более глубокую и безотходную переработку минерального сырья.

Работа выполнена при финансовой поддержке проекта фундаментальных исследований УрО РАН № 12-5-027-КНЦ, молодых ученых УрО РАН №13-5-НП-231.

ЛИТЕРАТУРА
1. Игнатьев В.Д., Бурцев И.Н. Лейкоксен Тимана: минералоги и проблемы технологии. СПб: Наука, 1997. 213 с.

2. Реализация проекта по комплексной переработке нефтетитановых руд Ярегского месторождения в целях создания горно-химического комплекса с заводом по производству пигментного диоксида титана, аэросила и материалов с наноструктурой и перспективой
использования сырья месторождения для производства металлического титана / А.А.Пранович, А.С.Клямко, В.В.Коржаков, В.И.Власенко. Титан, №1, 2010. С.11-17.

3. Разработка научных основ технологий комплексной переработки кварц-рутилового сырья для функциональных наноматериалов на основе соединений титана и кремния / Ю.И. Рябков, П.В.Истомин, А.В.Надуткин и др. / Известия Коми научного центра УрО РАН, выпуск 1(13). Сыктывкар, 2013. С.19-24.

4. Перовский И.А., Игнатьев Г.В. Фтораммонийный способ обескремнивания лейкоксенового концентрата Ярегского месторождения // Прогнозная оценка технологических свойств полезных ископаемых методами прикладной минералогии: Сборник статей по материалам докладов VII Российского семинара по технологической минералогии. Петрозаводск: Изд-во КарНЦ, 2013. С.110-116.

5. Перовский И.А. Эффективность применения механоактивации лейкоксенового концентрата при его обескремнивании фтораммонийным способом // Структура, вещество, история литосферы Тимано-Североуральского сегмента: Материалы 20-ой научной конференции. Сыктывкар: Геопринт, 2012. С.176-183.

Проблемы рационального использования природного и техногенного сырья Баренц-региона


busy
 

Язык сайта:

English Danish Finnish Norwegian Russian Swedish

Популярное на сайте

Ваш IP адрес:

35.173.48.18

Последние комментарии

При использовании материалов - активная ссылка на сайт https://helion-ltd.ru/ обязательна
All Rights Reserved 2008 - 2024 https://helion-ltd.ru/

�������@Mail.ru ������.�������